Quarternäre Triphenylphosphoniumverbindungen

Von Hans Fürst.

GERDA WETZKE, WERNER BERGER und WALDFRIED SCHUBERT¹)

Inhaltsübersicht

Es wurden Triphenylphosphoniumverbindungen durch Quarternisierung von Triphenylphosphin mit Chloressigestern und Chloracetaniliden hergestellt. Die Ergebnisse der biologischen Tests hinsichtlich der Wirksamkeit als Mottenmittel werden mitgeteilt.

1. Einleitung

Die Darstellung von hochaktiven, modernen Mottenschutzmitteln verlangt von der Forschung die Lösung folgender Fragenkomplexe:

Der Wirkstoff soll eine Dauerschutzwirkung gegen Mottenfraß besitzen, er soll sich durch Waschbeständigkeit und Lichtechtheit, Geruchlosigkeit und durch eine gute chemische Beständigkeit auszeichnen.

Triphenylphosphoniumsalze sind kationenaktive Verbindungen, die sehr große Vorteile bei der Verwendung als Mottenschutzmittel zeigen²). Sie lassen sich aus neutralen, wäßrigen oder alkoholischen Lösungen bei niedrigen Temperaturen waschbeständig auf die Faser aufziehen. Sie eignen sich dadurch auch zur Behandlung fertiger Textilien und verleihen diesen einen Dauerschutz gegen Mottenfraß.

Quarternäre Phosphoniumverbindungen werden nach folgenden bekannten Methoden hergestellt:

Durch direktes Erhitzen der Mischnung beider Komponenten bzw Durchführung der Reaktion in Anwesenheit eines Lösungsmittels. Quarternisierung nach der von Horner und Hoffmann entwickelten Diazomethode und der Kobaltsalzmethode³)

2. Ausgangsverbindungen

Die in der vorliegenden Arbeit aufgeführten Verbindungen konnten nach der ersten Methode hergestellt werden, da es sich bei den Quarterni-

¹⁾ G. Wetzke, W. Berger u. W. Schubert, Diplomarbeiten, Dresden 1958/59.

²) W. Perkow, Die Insektizide, S. 364, Hüthig-Verlag, Heidelberg (1958).

³⁾ L. HORNER u. H. HOFFMANN, Ber. dtsch. chem. Ges. 91, 45, 50 (1958).

sierungskomponenten um Verbindungen mit reaktionsfähigem, aliphatisch gebundenem Halogen handelt.

Reaktionsschemata:

A.
$$P + CH_2CICOOR \rightarrow P - CH_2COOR$$

R = normale und isomere aliphatische Reste sowie deren Substitutionsprodukte

B.
$$(\bigcirc)_3$$
P + CH₂ClCONHAr \rightarrow [($\bigcirc)_3$ P—CH₂COAr] ClAr = Phenylrest und substituierter Phenylrest

Triphenylphosphin wurde nach zwei bekannten Verfahren hergestellt. Nach Michaelis⁴) analog der Wurtzschen Synthese durch Umsetzung von Chlorbenzol und Phosphortrichlorid mit Natrium unter Verwendung von Toluol als Verdünnungsmittel⁵) und nach Dodonow und Medox⁶) durch Umsetzung von Phenylmagnesiumbromid mit Phosphortrichlorid.

Die benötigten Chloressigsäureester wurden aus Chloracetylchlorid und den entsprechenden Alkoholen hergestellt. Die von Henry^7) bei der Darstellung des Chloressigsäure- β -chloräthylesters angewandte Methode konnte auf alle hier beschriebenen Ester übertragen werden.

Die Reaktionsgeschwindigkeit und die Starttemperatur der Reaktion ist bei den einzelnen eingesetzten Alkoholen sehr unterschiedlich.

Während 4-Chlorbutanol schon bei Zimmertemperatur unter Wärmeentwicklung reagiert, mussen Trichloräthanol und 1.1.1-Trichlorisopropanol längere Zeit auf dem Ölbad erwärmt werden. Am schwierigsten verestert 1.1.1.3-Tetraisopropanol auf Grund der sterischen Hinderung durch die zunehmende Chlorsubstitution an den Methyl-bzw. Methylengruppen.

Die hergestellten Ester sind in Tab. 1 aufgeführt. Die verschiedenen substituierten Chloracetaminobenzolderivate wurden nach bekannten Verfahren hergestellt. Einige Verfahren wurden dabei abgeändert und bisher nicht beschriebene Verbindungen analog gewonnen.

⁴⁾ A. MICHAELIS u. H. V. SODEN, Liebigs Ann. Chem. 229, 298 (1885).

⁵⁾ DRP 508667 v. 28. 10. 26; C 1930, 3195.

⁶⁾ J. Dodonow u. H. Medox, Ber. dtsch. chem. Ges. 61, 910 (1928).

⁷⁾ L. Henry, Bull. soc. chim. France (2) 42, 260.

 $\begin{array}{c} \text{Tabelle 1} \\ \text{CH}_2\text{ClCOOR} \end{array}$

R	Eigenschaften	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ausbeute % der Th.
C_3H_7 (n)	Кр ₂₀ : 67 °С	1,4255	74
C_3H_7 (i)	Kp ₂₀ : 57 °C	1,4198	70
C_4H_9 (n)	Kp ₂₀ : 81 °C	1,4291	65
C_4H_9 (i)	Kp ₂₀ : 74 °C	1,4258	61
C_4H_9 (sec.)	Kp ₂₀ : 65 °C	1,4248	72
C_4H_9 (tert.)	Кр ₂₀ : 59 °С	1,4220	59
C_5H_{11} (n)	К р₂₀: 96 °С	1,4321	60
C_5H_{12} (i)	Kp₂₀: 90 °C	1,4309	52
C_6H_{13}	К р₂₀: 112 °С	1,4349	67
$\mathrm{C_7H}_{15}$	Кр ₂₀ : 129 °С	1,4388	65
C_8H_{17}	Kp₂₀: 140 °C	1,4413	66
C_9H_{19}	Кр₂₀ : 157 °С	1,4433	57
$C_{10}H_{21}$	Kp ₂₀ : 170 °C	1,4466	61
$C_{12}H_{25}$	К р ₂₀ : 185 °С	1,4490	60
$\mathrm{CH_2}$ — $\mathrm{CH_2}$ Cl	Кр ₇₆₀ ; 199 °С	1,4645	65
$\mathrm{CH_2} ext{}\mathrm{CHCl_2}$	Кр₁₆: 100—102,5 °С	1,4800	48
$\mathrm{CH_2}$ — $\mathrm{CCl_3}$ $\mathrm{CH_2Cl}$	Кр ₁₅ : 100—103 °С	1,4863	66
CH _{CH₃}	Kp: 126—127 °C	1,4558	86
$_{\sim} \mathrm{CH_{2}Cl}$			
CH,Cl ,CHČl,	Кр ₁₅ : 120—123 °С	1,4860	70
$^{ m CH}^3$	Кр ₁₅ : 100—105 °С	1,4754	53
$ m CH^3$	Кр ₁₀ : 103—105 °С	1,4825	65
$_{\mathrm{CH_{2}Cl}}^{\mathrm{CCl_{3}^{\prime}}}$	Кр ₁₅ : 148 °С		35
CH_2 — $CHCl$ — CH_3	Кр₁₀: 98—101 °С	1,4546	85
CH_2 — CH_2 — CH_2 Cl	Kp ₂₂ : 116—119 °C	1,4615	79
$\mathrm{CH_2}$ — CHCl — $\mathrm{CH_2Cl}$	Kp ₁₅ : 127—130 °C	1,4863	70
CH_2 — CH_2 — $CHCl_2$	Kp ₁₅ : 120—123 °C	1,4813	78
$\mathrm{CH_2}$ — $\mathrm{CH_2}$ — $\mathrm{CH_2}$ — $\mathrm{CH_2}$ Cl	Kp ₁₅ : 130—140 °C	1,4650	55
$\mathrm{CH_2}$ — $\mathrm{CH_2}$ — $\mathrm{CH_2}$ — $\mathrm{CH_2}$ —	110		
$_{\mathrm{CH_2-CH_2Cl}}^{\mathrm{ZH_2-CH_2Cl}}$	Кр ₁₈ : 155—157 °С	1,4635	51
CH_2	Кр ₁₆ : 160—163 °С	1,5400	58
CH_2 ————————————————————————————————————	Кр ₁₈ : 165—167 °С	1,5401	65
Ċl			

Fortsetzung von Tabe	elle I	1
$CH_2CICOOR$		

R	Eigenschaften	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ausbeute % der Th.
CH_2	Кр ₁₆ : 165—167 °С	1,5407	50
CH_2 Cl	Кр ₁₅ : 181—185 °С	1,5570	55
CH_2 Cl	Кр ₁₆ : 185—189 °С	1,5551	63
CH ₂ —Cl	Кр ₁₄ : 178—182 °С	1,5555	65
CH ₂ —Cl	Fp: 71 °C	_	81
Cl	Kp ₁₈ : 150—153 °C Fp: 35 °C		72
Cl	Кр ₁₂ : 104—142 °С	1,5386	60
CH ₃	Fp: 39 °C		78
—CI	Кр ₁₃ : 154—157 °С	1,5409	61

Bei der in der Literatur beschriebenen Darstellung von Chloracetylp-phenetidin⁸) konnten nur Ausbeuten von 30 bis 40% erhalten werden. Gute Ergebnisse erhielten wir, wenn das Amin in einer Mischung von 45proz. Essigsäure und gesättigter Natriumacetatlösung in der Kälte tropfenweise mit Chloracetylchlorid versetzt wurde.

Bei Chloressigsäure-m-toluidid könnte eine Ausbeuteerhöhung von 75 auf 92% erzielt werden, wenn wir statt Benzol 9) Toluol verwendeten.

⁸⁾ A. BISTRZYCKI, F. ULFFERS, Ber. dtsch. chem. Ges. 31, 2790 (1898).

⁹⁾ W. Jones, J. Amer. chem. Soc. 49, 1534 (1927).

 $\begin{array}{c} \textbf{Tabelle 2} \\ \textbf{CH}_{\textbf{2}}\textbf{ClCONHR} \end{array}$

R	Schmelz- punkt °C	Ausbeute % d. Th.
Br		
Br	219—220	70
Br Br		
-N(CH ₃) ₂	154	76
-OCH ₃	91	67
$ m CH_3$		
$-\mathrm{SO_2NH_2}$	214	69
SO ₂ NHCOCH ₃	229	63
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	134—135	90
OH COOC ₂ H ₅	121	68
NO ₂	153	85
	110	38
NO ₂	110	
	109	89
$\widetilde{\mathrm{NO}_{2}}$		
$-\text{COOC}_2\text{H}_4\text{N}(\text{C}_2\text{H}_5)_2$	59	30
—C1	97	89
Cl		
-C1	108	65
Ċ1 Cl		
—CI	74	60
Ċl	1	I

2		
R	Schmelz- punkt °C	Ausbeute % d. Th.
O-C ₂ H ₅	145	47
	63	68
$\overset{\text{C'}_2\text{H}_5}{\underset{\text{CH}_3}{\longleftarrow}}$	87	92
_соон	237	79
СООН	228( <b>Z</b> )	80
_CH ₂ COOH	158	75

Fortsetzung von Tabelle 2  $CH_{2}CICONHR$ 

Chloracetamino-3-methyl-4-methoxybenzol konnte von uns ebenfalls durch Arbeiten in Eisessig-Natriumacetatlösung, zum anderen durch Reaktion des Amins mit Chloracetylchlorid unter Verwendung von Toluol als Lösungsmittel in seinem Herstellungsverfahren verbessert werden.

Die hergestellten Chloracetaminobenzolverbindungen sind in Tab. 2 aufgeführt.

# 3. Quarternisierung von Triphenylphosphin

#### A. Quaternisierung von Triphenylphosphin mit Chloressigsäureestern

Die Ester der Chloressigsäure wurden ohne Verwendung von Lösungsmitteln direkt mit Triphenylphosphin umgesetzt. Bei 60 bis 70 °C bildeten die Mischungen eine homogene Lösung. Die Reaktion setzte je nach Art des Esters zwischen 65 und 80 °C ein. Sie machte sich durch zunehmende Zähigkeit der Lösung oder Bildung von Kristallnestern bemerkbar. Die Reaktions- und Kristallisationszeiten sind sehr unterschiedlich.

Besonders reaktionsfähig erwiesen sich in der Reihe der halogenfreien Alkohole die Ester des tert.-Butyl-, Allyl-, iso-Propyl- und sec.-

	<u>~</u>		) sP—CH2COOR CI	OR CI				
  2	Fivenschaften		Reaktionszeit, -temperatur	nszeit/	Summenformel	Mol-	7	Analyse
	9	% d. Th.	min	သ		gewicht	ber.	gef.
CH2—CH2CI		89 95	30 30	65 65	$C_{22}H_{21}O_2Cl_2P \ C_{29}H_{20}O_2Cl_3P$	419,28	16,91	17,0 % CI 23,5 % CI
		95	120	22	$C_{22}H_{19}O_2CI_4P$	488,18	29,05 Pikrat	te
							15,62	15,1 % CI
CH CHICI		88	30	20	$\mathrm{C_{23}H_{23}O_{2}Cl_{2}P}$	433,31	16,37	16,0 % CI
CHCI.	~~~	81	30	80	$\mathrm{C_{23}H_{22}O_{2}Cl_{3}P}$	467,76	22,74	23,0 % CI
CH, CH, CH, CH		91	30	75	$\mathrm{C_{23}H_{22}O_{2}Cl_{3}P}$	467,76	22,74	23,4 % CI
COL		95	09	85	$\mathbf{C_{23}H_{21}O_{2}Cl_{4}P}$	502,21	28,24	28,9 % CI
CH,—CHCI—CH,		85	30	75	$C_{23}H_{23}O_2Cl_2P$	433,31	16,37	16,1% CI
$C(CH_3)_3$	Fp: 165 °C	85	Ð	09	$C_{24}H_{26}O_2CIP$	412,8	8,61	8,60% CI
$C_{\mathbf{H}_{11}}$	Fp: 131 °C	79	180	90	$C_{25}H_{28}O_2CIP$	456,8	8,32	8,50% CI
$(\mathrm{CH_2})_2\mathrm{CH}(\mathrm{CH_3})_2$	Fp: 135 °C	9	180	90	$\mathrm{C_{25}H_{28}O_2CIP}$	456,8	8,32	8,50% CI
$C_{\mathbf{H}_{13}}$	Fp: 125 °C	65	150	95	C ₂₆ H ₃₀ O ₂ CIP	440,8	8,05	8,15% CI
$ ext{CH}_{CH}$	Fp: 135—137°C	96	50	22	$\mathrm{C_{23}H_{22}O_{2}ClP}$	396,8	8,95	8,74% CI
CH CH	Fp: 138 °C	87	09	95	$C_{26}H_{28}O_2CIP$	438,8	8,10	8,26% CI
CH2—CH2								

21 J. prakt. Chem. 4. Reihe, Bd. 17.

F	i i	Ausbeute	Reaktionszeit	nszeit/		Mol-	A	Analyse	1
11 22	bigenschaften	% d. Th.	-temperatur min. °C	oc oc	Summentormet	gewicht	ber.	gef.	
CH ₂ —CH ₂ —CH ₂ Cl		81	30	75	$\mathrm{C}_{23}\mathrm{H}_{23}\mathrm{O}_2\mathrm{Cl}_2\mathrm{P}$	433,31	16,37	16,4%	ಶ
$CH_2$ — $CHCI$ — $CH_2CI$		83	30	22	$C_{23}H_{22}O_2Cl_3P$	467,76	22,74	22,5%	ಶ
$\mathrm{CH_2}$ — $\mathrm{CH_2}$ — $\mathrm{CHOl_2}$		75	30	20	$C_{23}H_{22}O_2Cl_3P$	467,76	22,74	22,3%	ರ
$\mathrm{CH_2}$ — $\mathrm{CH_2}$ - $\mathrm{CH_2}$ - $\mathrm{CH_2}$ CI		20	30	20	$C_{24}H_{25}O_2Cl_2P$	447,33	15,85	15,6%	IJ
$CH_2$ — $CH_2$ — $CH_2$ — $CH_2$ — $CH_2$ CH		89	30	20	$\mathrm{C_{26}H_{29}O_2Cl_2P}$	461,36	15,37	14,4%	ರ
$CH_2$ — $C_6H_4$ CI (o)		09	120	75	$C_{27}H_{23}O_2Cl_2P$	481, 35	Pikrat	rat	
							5,26	2,7%	ಶ
$\mathrm{CH}_2$ — $\mathrm{C}_6\mathrm{H}_4\mathrm{Cl}(\mathrm{p})$		98	30	25	$\mathrm{C_{27}H_{23}O_{2}Cl_{2}P}$	481,35	14,73	15,1%	ರ
$CH_2$ — $C_6H_4$ CI (m)		66	30	22	$C_{27}H_{23}O_2Cl_2P$	481,35	14,73	14,5%	ದ
$\mathrm{CH_2}$ — $\mathrm{C_6H_3Cl_2}$ (2,4)		65	30	75	$\mathrm{C_{27}H_{22}O_{2}Cl_{3}P}$	515,80	20,62	20,1%	り
$CH_2$ — $C_6H_3Cl_2$ (3,4)		91	30	75	$\mathrm{C_{27}H_{22}O_{2}Cl_{3}P}$	515,80	20,62	19,0%	ರ
$\mathrm{CH_2}$ — $\mathrm{C_6H_3Cl_2}$ (2,5)		385	30	22	$\mathrm{C_{27}H_{22}O_2Cl_3P}$	515,80	20,62	21,0%	ರ
$CH_2$ — $C_6H_2Cl_3$ (2, 4, 5)		06	30	22	$C_{27}H_{21}O_2CI_4P$	550,25	25,87	56,0%	ವ
$C_{\mathbf{b}}\mathbf{H}_{\mathbf{c}}\mathbf{C}\mathbf{I}$ ( $\mathbf{p}$ )		25	09	75	$C_{26}H_{21}O_2Cl_2P$	467,32	15,17	]	
							Pil	Pikrat	
							5,37	4,7%	C
$C_6H_4CI$ (o)		85	30	20	$\mathrm{C_{26}H_{21}O_{2}Cl_{2}P}$	467,32	15,17	15,7%	ರ
$C_6H_3Cl_2$ (2,4)		51	09	75	$C_{26}H_{20}O_{2}Cl_{3}P$	501,77	21,20	1	
							4	Pikrat	
			_				10,21	8,1%	ಶ
CH ₃ (3)		,	,		;				
$C_{\mathbf{H}_{\mathbf{J}}}$		0 0 0 0	09	22	$\mathrm{C_{27}H_{23}O_2Cl_2P}$	481,53	14,73	1	
_CI (4)	· · · · · ·						Pil	Pikrat	
	···						5,26	4,8%	ದ
		-	•						

Tabelle 3 (Fortsetzung)  $\left[ \left( \left\langle \right\rangle \right)_{3} P-CH_{2}COOR \right] CI$ 

	//1	2 - 0/	1	_				
== £4	Eigenschaften	Ausbeute	1 22	eaktionszeit/ temperatur	Summenformel	Mol-	A	Analyse
	)	% a. 1n.		ည		gewich	ber.	gef.
C,H,	Fp: 140°C	75	120	75	$C_{23}H_{23}O_2CIP$	398,8	9,27	9,28% CI
CH(CH ₃ ) ₂	Fp: 165 °C	22	10	80	$C_{23}H_{24}O_{2}CIP$	398,8	8,91	9,06% CI
$C_4H_3$	Fp: 151 °C	75	180	85	$C_{24}H_{26}O_2CIP$	412,8	8,61	8,68% CI
$CH_2CH(CH_3)_2$	Fp: 159 °C	75	300	95	$C_{24}H_{26}O_2CIP$	412,8	8,61	9,02% CI
CH CH \C2H	Fp:139—141°C	85	15	75	CMH26O2CIP	412,8	8,61	8,83% CI

Butylalkohols. Mit zunehmender Kettenlänge der n-aliphatischen Alkohole (ab C₇) widersetzten sich die Ester der Quarternisierung. Es trat Zersetzung während der Reaktion ein unter Bildung von Methyltriphenylphosphoniumehlorid.

Bei den Chloressigestern der chlorierten Alkohole kristallisierten die chlorreichsten Verbindungen am schwersten. Es konnte stets nur eine Quarternisierung durch das Chloratom der Chloressigsäure festgestellt werden, obwohl grundsätzlich alle im Molekül enthaltenen Chloratome für die Reaktion in Betracht zu ziehen sind.

Die hergestellten quarternären Verbindungen sind in Tab. 3 aufgeführt.

# B. Quaternisierung von Triphenylphosphin mit Chloracetaminobenzolderivaten

Die direkte Umsetzung von Triphenylphosphin mit Chloracetaniliden erfordert Temperaturen von 200°C und Reaktionszeiten von 4 bis 7 Stunden. Bei diesen Bedingungen tritt häufig Zersetzung bzw. Polymerisation der Chloracetanilide ein.

Es wurden deshalb verschiedene Lösungsmittel auf ihre reaktionsbeschleunigende Wirkung hin untersucht. Wir konnten feststellen, daß sich besonders Lösungsmittel mit großer Dielektrizitätskonstante dazu eignen. Sie aktivieren die Kohlenstoff-Chlorbindung und setzen die Reaktionszeit und -temperatur herab. Sehr gute Ergebnisse konnten mit Nitromethan und Dimethylformamid erhalten werden. Während die Quarternisierung mit Chloressigsäure-3.4-dichloranilid eine Reaktionszeit von 6 Stunden bei 180 bis 200 °C erfordert, benötigt die Reaktion bei Anwesenheit von Nitromethan nur 2 Stunden bei 100 °C.

Die hergestellten quarternären Verbindungen sind in Tab. 4 aufgeführt.

Die Substanzen wurden durch Bestimmung des Chlorgehaltes nach einer von Fürst und Praeger¹⁰) modifizierten Schöniger-Methode bzw. nach Wurzschmitt und Zimmermann¹¹) identifiziert.

Entsprechend den Ammoniumsalzen entstanden bei den dargestellten Phosphoniumsalzen mit Pikrinsäure ebenfalls in Wasser schwer lösliche Fällungen. Es wurde dadurch möglich, die nicht kristallin faßbaren Verbindungen zu reinigen und ebenfalls zu analysieren. Außerdem gestattet die Pikrinsäurereaktion eine schnelle Entscheidung der Frage, ob überhaupt Quarternisierung stattgefunden hat.

¹⁰⁾ H. FÜRST u. K. PRAEGER, Chem. Technik 9, 538 (1958).

¹¹) B. Wurzschmitt u. W. Zimmermann, Fortschr. chem. Forschung 1, 485 (1950).

Tabelle 4  $\left[ \left( \left\langle \right\rangle \right)_{3} P - C H_{2} CONHR \right] C$ 

ا( مح	Eigen- schaften	Ausbeute	Reaktionszeit/	szeit/	Lösungsmittel	Summenformel	Mol.		Analyse
	Fp. °C	% d. Th.	min	၁	0		gewicht	ber.	gef.
C,H,	240	94		164	**Iller***	$C_{26}H_{23}OCINP$	431	3,20	3,39% N
C,H,OCH,	230	91	20	110	1	$C_2$ , $H_{25}$ $O_2$ CINP	461	3,10	$3,26\%~\mathrm{N}$
$C_{\mathbf{H}_{\mathbf{I}}}^{\mathbf{I}}OC_{\mathbf{S}}\mathbf{H}_{\mathbf{S}}^{\mathbf{I}}$	239	87	50	150	ļ	$C_{28}H_{27}O_2CINP$	475	3,50	3,57% N
$C_{\mathbf{k}}\mathbf{H_{4}OC_{2}H_{3}}(o)$	209	75	120	150	ļ	$C_{28}H_{27}O_2CINP$	475	3,03	3,01% N
C,H,CH,	214	94	50	130	1	$C_{27}H_{25}OCINP$	445	3,14	3,24% N
$C_{6}\mathbf{H}_{4}^{\mathbf{C}}\mathbf{G}\mathbf{H}_{3}^{3}\left(\mathbf{m}\right)$	147	55	360	150	ļ	$C_{27}H_{24}OCINP$	445	3,14	3.27 % N
$C_{6}\mathbf{H_4}\mathbf{CH_3}$ (o)	170 (211)	49	240	150	1	C27H25OCINP	445	3,14	3,70% N
C,H,COOH	142	75	180	180	1	$C_{27}H_{23}O_3NCIP$	475	2,95	3,20% N
C ₆ H ₄ COOH (m)	172	89	420	180	1	$C_{27}H_{23}O_3CINP$	475	2,95	3,07% N
C,H,CH,COOH	160	85	240	160	}	C28H25O3CINP	489	2,86	3,06% N
C,H,COCH,	218	94	10	115	1	C27H25O2CINP	473	2,96	3,02% N
C ₈ H ₄ OH (m)	260	28	120	170	1	C26H23O2CINP	447	3,13	3,04% N
C,H,COOC,H,	09	91	120	121	ļ	C29H27O3CINP	203	2,78	$2,98\%  \mathrm{N}$
C,HINO	- 29	94	120	128	1	$C_{26}H_{22}O_3N_2CIP$	476	5,90	6,10% N
$C_{6}H_{4}NO_{2}$ (m)	221	06	10	150	J	$\mathrm{C_{26}H_{22}O_3CIN_2P}$	476	5,90	$6,12\%~\mathrm{N}$
C,H,CI	220	20	20	180	1	C ₂₆ H ₂₂ OCl ₂ NP	465	3,01	$3,16\%~\mathrm{N}$
$C_{\mathbf{b}}\mathbf{H}_{\mathbf{a}}\mathbf{C}\mathbf{l}$ (o)	217	89	120	175	1	C26H22OCI2NP	465	3,01	3,09% N
$C_{k}H_{s}Cl_{s}$ (2,5)	280 (Z)	70	09	160	,	C26H21OCl3NP	499	2,81	3,20% N
$C_{\mathbf{f}}\mathbf{H}_{3}\mathbf{Cl}_{2}$ (2,4)	176	84	09	100	Nitromethan	C26H21OCI3NP	499	2,81	2,87% N
$C_{\mathbf{f}}\mathbf{H_{3}}C\mathbf{l_{2}}$ (3,4)	221	89	120	100	Nitromethan	C26H21OCl3NP	499	2,81	3,01% N
$C_{\bf k}^{\bf H_2}Cl_{\bf k}^{\bf C}$ (2, 4, 6)	107	62	120	100	Nitromethan	C ₂₆ H ₂₀ OCl ₄ NP	533	2,63	2,84% N
$C_6H_3Br_2$ (2,4)	191	88	50	150	1	$C_{26}H_{21}OClBr_2NP$	589	2,37	$2,44\%~\mathrm{N}$
$C_6H_2Br_3$ (8)	95	09	54	100	Nitromethan	$C_{26}H_{20}OClBr_3NP$	899	2,10	2,60% N
	_			-	_	_		_	

Tabelle 4 (Fortsetzung)  $\left[ \left( \left\langle \begin{array}{c} \text{Tabelle A CH}_2\text{CONHR} \right| \text{CI} \end{array} \right) \right]$ 

R =	Eigen- schaften	Ausbeute	Reaktionszeit -temperatur	szeit/ atur	Lösungsmittel	Summenformel	Mol-	7	Analyse
	Fp. °C	% aer rn.	min.	၁့	)		gewient	ber.	gef.
$C_6H_4N(CH_3)_2$	229	50	09	100	Nitromethan	C ₂₈ H ₂₈ ON ₂ CIP	474	5,95	6,04% N
CeH3OCH3, CH3	218	92	120	100	Nitromethan	C28H2,O2CINP	475	2,95	3,01% N
C6H4SO2NH2	275 (Z)	89	120	180		C26H24O3CIN2SP	510	5,52	5,70% N
C,H,SO,H	340 (Z)	71	120		Dimethylformamid	$C_{26}H_{23}O_4NSP$	511	2,74	3,15%  N
C,H3CH3,OH	285 (Z)	89	30	100	Nitromethan	C27H25O2CINP	461	3,03	3,70% N
C,H,SO,NHCOCH3	240	09	09	100	Nitromethan	C28H26O4CIN2SP	552	5,07	5.24% N
C6H4N2C6H5	244	38	30	100	Nitromethan	C32H27OCIN3P	503	8,34	8,26% N
$NC_5H_5$	218	45	30	90	Nitromethan	$C_{25}H_{23}OCIN_2P$	401	86,9	6,73% N

#### 4. Biologischer Test

Die Verbindungen wurden zum Teil auf ihre Dauerschutzwirkung gegen Mottenfraß an Wollstoffproben untersucht. Von den hergestellten Phosphoniumverbindungen zeigten folgende einen guten Wollschutz:

$$[(\begin{tabular}{llll} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

### 5. Beschreibung der Versuche

# Quaternisierung von Triphenylphosphin mit Chloressigsäure-1,3-dichlorisopropylester

2,5 g des Esters und 2 g Triphenylphosphin wurden in ein dicht schließendes Wägegläschen eingewogen und auf dem Wasserbad erwärmt. Die Temperatur wurde so gewählt, daß gerade eben keine Gasbildung im Reaktionsgemisch zu erkennen war (75 °C Wasserbadtemperatur). Nachdem die Temperatur 3 h gehalten worden war, wurde das Wägegläschen nach dem Erkalten kurz geöffnet und die entstandene harzartige Masse mit dem Spatel geritzt. Nach mehreren Tagen war der Inhalt kristallisiert. Er wurde mit Äther verrieben und mehrmals mit Äther ausgewaschen. Die Ausbeute an rein weißem quarternären Produkt betrug 89%.

Die Quarternisierung von Triphenylphosphin mit den in Tab. 1 aufgeführten Chloressigsäureestern erfolgte nach der gleichen Arbeitsweise. Triphenylphosphin und Ester wurden im Molverhältnis 1:1,2 eingesetzt. Die Reaktionszeiten, -temperaturen, Ausbeuten, Analysenwerte und physikalischen Daten sind in Tab. 3 aufgeführt.

### Quaternisierung von Triphenylphosphin mit p-Chloracetaminochlorbenzol

2,65 g Triphenylphosphin und 2 g p-Chloracetamino-chlorbenzol wurden in einem Kolben unter Rückflußkühlung 20 Minuten auf 180 °C erhitzt. Das erhaltene Produkt wurde in absolutem Alkohol gelöst und mit absolutem Äther wieder gefällt. Die Ausbeute betrug 70%.

Ergebnisse der biologischen Tests¹²) Quartäre Verbindungen aus Triphenylphosphin (TPP) und Halogenessigsäure-Derivaten:

	Wollst	off im
	Original- zustand	gewasche- nen Zu- stand
TPP + Tetradecylbromid	0	1
TPP + Chloressigsäuredodecylester	1	3
TPP $+ \alpha$ -Brompropionsäure-i-propylester	2	3
$ ext{TPP} + lpha ext{-Brompropions\"aure-i-butylester}$	3	3
(s. Tab. 3):		
TPP + Chloressigsäure-propylester		1
TPP + Chloressigsäure-hexylester		1
TPP + Chloressigsäure-allylester		1
TPP + Chloressigsäurecyclohexanolester	1	3
$ ext{TPP} +  ext{Chloressigs\"{a}ure-$\omega$-chlorhexylester}$	2	3
TPP + Chloressigsäure- $\beta$ -trichloräthylester	1	1
TPP $+$ Chloressigsäure- $\beta$ , $\gamma$ -dichlorpropylester		4
TPP + Chloressigsäure- $\beta$ , $\beta'$ -dichlorisopropylester		1
TPP + Chloressigsäure-p-chlorbenzylester		1
TPP + Chloressigsäure-3,4-dichlorbenzylester	1	2
TPP + Chloressigsäure-2,4,5-trichlorbenzylester	1	1
${\it TPP+Chloressigs\"{a}ure-4-chlor-m-kresolester}  .  .  .  .  .  .  .  .  .  $	4	4
(s. Tab. 4):		ļ
$ ext{TPP} +  ext{Chloracetamid}  \dots  \dots  \dots  \dots$	3	3
$ ext{TPP} +  ext{4-Chloracetaminobenzoes}$ äure $ ext{"athylester"}$		3
TPP + Chloracet-3,4-dichloracetanilid		4
TPP + Chloracet-p(essigsäure)-anilid	1	2
$ ext{TPP} +  ext{Butylenbromid} \dots \dots \dots \dots \dots \dots$		1
$ ext{TPP} +  ext{Chloracet-p-phenetidin.} \dots \dots$		4

^{0 =} Wollschutz sehr gut

^{1 =} Wollschutz gut

^{2 =} Wollschutz noch ausreichend

^{3 =} Wollschutz nicht ausreichend

^{4 =} Wollschutz ungenügend

 $^{^{12}\!)}$  Die biologischen Prüfungen wurden im Biologischen Institut des VEB Farbenfabrik Wolfen durchgeführt.

Die Quarternisierung von Triphenylphosphin mit den in Tab. 2 aufgeführten Chloressigsäureamiden erfolgte analog. Es wurden äquimolare Mengen der Ausgangsprodukte eingesetzt. Die Reaktionszeiten, -temperaturen, Ausbeuten, Analysenwerte und physikalischen Daten sind in Tab. 4 aufgeführt.

Dresden, Institut für organisch-technische Chemie der Technischen Universität Dresden.

Bei der Redaktion eingegangen am 13. Dezember 1961.